Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Bromo-2-methylpyridine \mathbf{N}-oxide

Bo-Nian Liu, ${ }^{\text {a }}$ Shi-Gui Tang, ${ }^{\text {b }}$ Hao-Yuan Li, ${ }^{\text {a }}$ Ye-Ming Xu ${ }^{\text {a }}$ and Cheng Guo ${ }^{\text {a* }}$

${ }^{\text {a }}$ College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and ${ }^{\text {b }}$ College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
Correspondence e-mail: guocheng@njut.edu.cn
Received 29 April 2008; accepted 6 May 2008
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$; R factor $=0.064 ; w R$ factor $=0.163$; data-to-parameter ratio $=15.5$.

In the molecule of the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BrNO}$, the methyl C and oxide O atoms lie in the pyridine ring plane, while the Br atom is displaced by 0.103 (3) \AA. In the crystal structure, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For related literature, see: Ochiai (1953).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BrNO}$
Monoclinic, $P 2_{1} / n$
$M_{r}=188.03$

$$
a=7.3060(15) \AA
$$

$$
\begin{aligned}
& b=11.351(2) \AA \\
& c=8.4950(17) \AA \\
& \beta=111.01(3)^{\circ} \AA \\
& V=657.7(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \mu=6.16 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& 0.10 \times 0.05 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.578, T_{\text {max }}=0.748$
1275 measured reflections

1180 independent reflections 747 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
3 standard reflections frequency: 120 min intensity decay: none

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063 \quad 76$ parameters
$w R\left(F^{2}\right)=0.162$
$S=1.05$
1180 reflections

H -atom parameters constrained
$\Delta \rho_{\max }=0.87 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.41	$3.264(11)$	153

Symmetry code: (i) $-x+1,-y+2,-z+2$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2459).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ochiai, E. (1953). J. Org. Chem. 18, 534-551.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o1060 [doi:10.1107/S1600536808013391]

5-Bromo-2-methylpyridine \boldsymbol{N}-oxide

B.-N. Liu, S.-G. Tang, H.-Y. Li, Y.-M. Xu and C. Guo

Comment

Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), ring A (N/C1-C5) is, of course, planar. Br atom is at a distance of -0.103 (3) \AA to the plane of ring A , while atoms O and C 6 lie in the ring plane.

In the crystal structure, intermolecular C-H $\cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 5-bromo-2-methylpyridine ($80 \mathrm{~g}, 462 \mathrm{mmol}$) was suspended in glacial acetic acid $(300 \mathrm{ml})$, aqueous hydrogen peroxide (35%) was added and the mixture was heated in a water-bath at 343-353 K. After 3 h a further hydrogen peroxide solution (35 ml) was added and the mixture was maintained an additional 9 h at the same temperature. The mixture was concentrated to about 100 ml , diluted with water $(100 \mathrm{ml})$, and then again concentrated in vacuum as far as possible upon cooling to room temperature, a precipitate formed, which was collected by filtration, and then washed with cold ethanol $(2 \times 50 \mathrm{ml})$ to afford the ethyl ester as a white solid (yield; $83 \mathrm{~g}, 95 \%$) (Ochiai, 1953). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H , respectively, and constrained to ride on their parent atoms with $\mathrm{U}_{\text {iso }}(\mathrm{H})=\mathrm{xU}_{\text {eq }}(\mathrm{C})$, where $\mathrm{x}=1.5$ for methyl H , and $\mathrm{x}=1.2$ for aromatic H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

supplementary materials

Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

5-Bromo-2-methylpyridine \mathbf{N}-oxide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BrNO}$
$M_{r}=188.03$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=7.3060(15) \AA$
$b=11.351$ (2) \AA
$c=8.4950(17) \AA$
$\beta=111.01$ (3) ${ }^{\circ}$
$V=657.7(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=294(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.578, T_{\text {max }}=0.748$
1275 measured reflections
1180 independent reflections
747 reflections with $I>2 \sigma(I)$
$F_{000}=368$
$D_{\mathrm{x}}=1.899 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=6.16 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.10 \times 0.05 \times 0.05 \mathrm{~mm}$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.2^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 13$
$l=0 \rightarrow 10$
3 standard reflections
every 120 min
intensity decay: none

Refinement

Refinement on F^{2}
Least-squares matrix: full

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.162$
$S=1.05$
1180 reflections
76 parameters
Primary atom site location: structure-invariant direct methods

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.08 P)^{2}+P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.87$ e \AA^{-3}
$\Delta \rho_{\min }=-0.69 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br	$0.17025(14)$	$0.74086(7)$	$0.64566(12)$	$0.0448(4)$
N	$0.6201(9)$	$0.9804(5)$	$0.7872(8)$	$0.0290(15)$
O	$0.6767(10)$	$1.0662(5)$	$0.8994(8)$	$0.0506(18)$
C 1	$0.4547(13)$	$0.9187(7)$	$0.7722(10)$	$0.038(2)$
H 1 A	0.3842	0.9381	0.8405	0.046^{*}
C 2	$0.3901(11)$	$0.8283(6)$	$0.6579(10)$	$0.0289(18)$
C 3	$0.4939(15)$	$0.7989(8)$	$0.5576(12)$	$0.045(2)$
H 3 A	0.4523	0.7389	0.4781	0.053^{*}
C 4	$0.6635(12)$	$0.8623(7)$	$0.5795(11)$	$0.038(2)$
H 4 A	0.7354	0.8418	0.5127	0.045^{*}
C 5	$0.7341(13)$	$0.9535(7)$	$0.6929(10)$	$0.036(2)$
C 6	$0.9107(13)$	$1.0232(8)$	$0.7239(12)$	0.047
H 6 A	0.9754	0.9981	0.6493	0.071^{*}
H6B	0.9971	1.0126	0.8387	0.071^{*}
H6C	0.8761	1.1050	0.7043	0.071^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.0512(6)$	$0.0387(6)$	$0.0354(6)$	$-0.0061(5)$	$0.0045(4)$	$0.0010(5)$
N	$0.035(4)$	$0.022(3)$	$0.022(4)$	$0.009(3)$	$0.000(3)$	$-0.006(3)$
O	$0.072(5)$	$0.042(4)$	$0.032(4)$	$-0.021(3)$	$0.011(4)$	$-0.016(3)$
C 1	$0.050(6)$	$0.030(4)$	$0.027(5)$	$-0.004(4)$	$0.004(4)$	$-0.002(4)$

C2	$0.032(4)$	$0.020(4)$	$0.025(4)$	$0.006(3)$	$-0.002(4)$	$0.006(3)$
C3	$0.050(6)$	$0.035(5)$	$0.036(5)$	$0.003(5)$	$0.001(5)$	$-0.014(4)$
C4	$0.038(5)$	$0.037(5)$	$0.034(5)$	$0.013(4)$	$0.009(4)$	$-0.008(4)$
C5	$0.051(5)$	$0.025(4)$	$0.021(5)$	$0.011(4)$	$0.000(4)$	$0.003(4)$
C6	0.047	0.047	0.047	0.000	0.017	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br}-\mathrm{C} 2$	$1.859(8)$
$\mathrm{N}-\mathrm{O}$	$1.322(8)$
$\mathrm{N}-\mathrm{C} 1$	$1.362(10)$
$\mathrm{N}-\mathrm{C} 5$	$1.381(10)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.375(11)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.369(12)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.387(12)$
$\mathrm{O}-\mathrm{N}-\mathrm{C} 1$	$118.9(7)$
$\mathrm{O}-\mathrm{N}-\mathrm{C} 5$	$118.9(7)$
$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 5$	$122.1(7)$
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$121.2(8)$
$\mathrm{N}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.7(8)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br}$	$119.7(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br}$	$120.6(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.3(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.4
$\mathrm{O}-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$-179.7(7)$
$\mathrm{C} 5-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$-1.9(12)$
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.3(12)$
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br}$	$177.3(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.0(13)$
$\mathrm{Br}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-176.0(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.9(14)$

C3-H3A	0.9300
C4-C5	$1.382(12)$
C4-H4A	0.9300
C5-C6	$1.455(12)$
C6-H6A	0.9600
C6-H6B	0.9600
C6-H6C	0.9600
C5-C4-C3	$125.0(8)$
C5-C4-H4A	117.5
C3-C4-H4A	117.5
N-C5-C4	$114.7(8)$
N-C5-C6	$117.1(7)$
C4-C5-C6	$128.2(8)$
C5-C6-H6A	109.5
C5-C6-H6B	109.5
H6A-C6-H6B	109.5
C5-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
O-N-C5-C4	$179.7(7)$
C1-N-C5-C4	$2.0(11)$
O-N-C5-C6	$-0.3(11)$
C1-N-C5-C6	$-178.1(7)$
C3-C4-C5-N	$-0.5(13)$
C3-C4-C5-C6	$179.5(9)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$D — H \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$
Symmetry codes: (i) $-x+1,-y+2,-z+2$.

Fig. 1

Fig. 2

